

Nombre de la Asignatura: ESTADÍSTICA 2

a) Generalidades

		Código:	EST 2	Duración del ciclo en semanas:	16
Prerrequisito (s):	EST 1	Ciclo Académico:	IV	Duración /Hora Clase en minutos:	50
		Área	Profesional	Número /Hora- Clase por ciclo:	80
		U.V.:	4	Horas teóricas/ Semanales:	3
				Horas prácticas/ Semanales:	2

b) Descripción de la Asignatura:

Esta asignatura es una introducción a las técnicas de inferencia estadística y sus aplicaciones al análisis de datos continuos y categóricos en el contexto de las ciencias económicas.

c) Objetivo General de la Asignatura:

Objetivos Cognitivos:

Definir los conceptos de muestreo y distribuciones muéstrales, I teorema del límite central y Definir la media muestral.

Conocer una variedad de técnicas estadísticas para el análisis de datos provenientes de encuestas, experimentos, series económicas y lograr la resolución de problemas de toma de decisiones en las distintas áreas de la administración y para el análisis básico de datos económicos.

Objetivos Procedimentales:

Manejo de las técnicas inferenciales para el análisis estadístico de datos provenientes de encuestas, experimentos y series económicas.

Solucionar problemas prácticos de la estadística inferencial, con aplicación a las empresas.

Objetivos Actitudinales:

Diferenciar los distintos modelos de aplicación de la estimación y las pruebas de hipótesis.

Evaluar aplicaciones muéstrales en los ambientes empresariales.

a) Contenidos:

UNIDAD I DISEÑOS MUESTRALES Y DISTRIBUCIÓN MUESTRAL DE ESTADÍSTICOS.

Contenido:

- 1.1. Diseños muéstrales. Definiciones. Conceptos básicos del muestreo (población, muestra, el muestreo, la medición, el muestreo probabilístico y no probabilístico, las listas, las unidades de muestreo, la estructura de muestreo, fiabilidad y efectividad). Diseño de muestreos alternativos.
- 1.2. Muestreos aleatorios. Simple, sistemático, estratificado, por conglomerado.
- 1.3. Muestreo no aleatorio. Dirigido, por cuotas, deliberado.
- 1.4. Distribución muestral de medias.
 - 1.4.1. Muestreo con reemplazamiento.
 - 1.4.2. Muestreo sin reemplazamiento.
 - 1.4.3. Efecto producido al aumentar el tamaño de la muestra.
- 1.5. Teorema del límite central.
- 1.6. Distribución muestral de proporciones.

UNIDAD II ESTIMACIÓN

Contenido:

- 2.1 Definiciones.
 - 2.1.1. Estimación de punto y estimación de intervalo.
 - 2.1.2. Intervalos, límites y coeficientes de confianza.
 - 2.1.3. Cálculo del valor crítico de "Z" para un determinado coeficiente deconfianza.
- 2.2. Estimadores.
 - 2.2.1. Propiedades de un estimador
 - 2.2.1.1. Insesgamiento.
 - 2.2.1.2. Eficiencia.
 - 2.2.1.3. Suficiencia.
- 2.3 Aplicaciones de los Intervalos de confianza.
 - 2.3.1. Intervalos de confianza para la media con el uso de la distribución normal (con σ conocida y desconocida)
 - 2.3.2. Intervalos de confianza para la media con el uso de la distribución t
 - 2.3.3. Intervalos de confianza para la varianza y la desviación estándar de una

distribución normal

- 2.3.4. Intervalos de confianza para la diferencia entre dos medias con el uso de la distribución normal
- 2.3.5. Intervalos de confianza para la diferencia entre dos medias con el uso de la distribución t
- 2.3.6. Intervalos de confianza para la proporción de la población
- 2.3.7. Intervalos de confianza para la diferencia entre dos proporciones
- 2.4. Determinación del tamaño adecuado de la muestra para la estimación de la media:
 - 2.4.1. Tamaño de la muestra para estimar una media poblacional (poblaciones infinitas).
 - 2.4.2. Tamaño de la muestra para estimar una media poblacional conociendo el tamaño de la población.
 - 2.4.3. Tamaño de la muestra para estimar una proporción poblacional (poblaciones infinitas).
 - 2.4.4. Tamaño de la muestra para estimar una proporción poblacional conociendo el tamaño de la población.

UNIDAD III PRUEBA DE HIPÓTESIS PARA VARIABLES CUANTITATIVAS.

Contenido:

- 3.1. Definición de una hipótesis.
- 3.2. Objeto de la prueba de significación.
- 3.3. Planteamiento de las hipótesis.
- 3.4. Error tipo I y tipo II.
- 3.5. Pruebas unilaterales y bilaterales.
 - 3.5.1. Prueba unilateral (extremo derecho).
 - 3.5.2. Prueba unilateral (extremo izquierdo).
 - 3.5.3. Prueba bilateral o de dos extremos.
- 3.6. Procedimiento para probar la hipótesis (Pasos de la prueba de hipótesis)
- 3.7. Tipos de prueba de hipótesis.
 - 3.7.1. Prueba de una hipótesis referente a la media usando la distribución normal y la distribución t
 - 3.7.2. Prueba de la diferencia entre dos medias usando la distribución normal y la distribución t
 - 3.7.3. Pruebas acerca de la varianza de una distribución normal.
 - 3.7.4. Pruebas acerca de las medias de varias distribuciones normales.
 - 3.7.5. Pruebas acerca de las varianzas de varias distribuciones normales.
 - 3.7.6. Prueba de hipótesis para una proporción muestral
 - 3.7.7. Prueba de hipótesis para dos proporciones muéstrales
 - 3.7.8. Pruebas de bondad de ajuste.

- 3.7.9. Conexión entre los intervalos de confianza y las pruebas de hipótesis
- 3.7.10. Pruebas de hipótesis con observaciones apareadas
- 3.7.11. Potencia de una prueba
- 3.7.12.
- 3.7.13. Determinación del tamaño de muestra requerido para probar la media
- 3.7.14. Determinación del tamaño de muestra requerido para probar la proporción 3.8.Uso de Excel, Minitab y SPSS.

UNIDAD IV PRUEBA DE HIPOTESIS PARA VARIABLES CUALITATIVAS

Contenido:

- 4.1. Definiciones.
- 4.2. La prueba de Chi-cuadrado relativa a frecuencias.
- 4.3. Uso de la tabla de distribución de Chi-cuadrado.
- 4.4. La prueba ji cuadrada para la diferencia entre dos proporciones: (se desarrollan tablas de contingencia)
- 4.5. Prueba de independencia
- 4.6. La prueba ji cuadrada para probar la diferencia entre "c" poblaciones
- 4.7. Prueba ji cuadrada de independencia en la tabla que tiene R (filas) y C (columnas)
- 4.8. Prueba ji cuadrada para la bondad del ajuste para la distribución de probabilidad
- 4.9. Cuadros de contingencia.
- 4.10 Pruebas de homogeneidad.

UNIDAD V ANÁLISIS DE VARIANZA (ANOVA)

Contenido:

- 5.1. Introducción al análisis de varianza. Por qué los administradores deben conocer el "ANOVA".
- 5.2. ANOVA: Prueba de la igualdad de k medias de la población.
- 5.3. Estructura y supuestos del modelo de Análisis de Varianza.
- 5.4. Estimación de la varianza poblacional entre tratamientos.
- 5.5. Estimación de la varianza poblacional dentro de los tratamientos.
- 5.6. Comparación de las estimaciones de las varianzas. La prueba F.

UNIDAD VI ANÁLISIS DE REGRESIÓN Y CORRELACIÓN

Contenido:

6.1. Diagramas de dispersión.

- 6.2. Coeficiente de correlación y de determinación.
- 6.3. Modelo de regresión lineal simple. Calculo de la ecuación de regresión.
- 6.4. Pruebas de significancia. Calculo del coeficiente de la desviación estándar de regresión.
- 6.5. Regresión curvilínea. Caso parabólico (función de segundo grado).

e) Estrategia Metodológica

El programa ha sido estructurado para que el estudiante construya su propio aprendizaje a partir de los elementos otorgados por el docente.

Se asigna el 60% del total de horas para que el docente:

 Guíe el aprendizaje a través de clases magistrales/dialogadas, donde se transmitan los conocimientos conceptuales sobre el tema que se desarrolla y se realicen los ejercicios que apoyen esos conocimientos.

El otro 40% del total de horas se deberá utilizar en actividades de aprendizaje, tales como:

- Solución de problemas: El docente presentará problemas aplicados donde el estudiante aplicará los temas explicados en clase, sabrá identificar y plantear alternativas de solución.
- Análisis y evaluación de tareas ex aula. El alumno desarrollará ejercicios que sean dejados por el docente en forma individual o grupal, para fortalecer los temas tratados en clase.

Asimismo, se podrá utilizar la metodología de que los alumnos realicen proyectos de investigación teórico práctico para que complementen sus conocimientos y apliquen los conceptos impartidos en clase.

En los temas en que sea pertinente, se podrán utilizar la metodología de talleres informáticos para utilizar software de aplicación práctica.

Estas actividades quedan a consideración del catedrático, pudiendo utilizar otros métodos y técnicas alternativas que favorezcan el proceso de enseñanza aprendizaje de acuerdo con el modelo educativo definido por la Universidad.

f) Bibliografía

Nombre de la Obra	Autor	Casa Editora	País	Año de edición	No. de ejempl ares en bibliot eca
----------------------	-------	-----------------	------	-------------------	-----------------------------------

Estadística para Administración y Economía. Décima edición	David R. Anderson; Dennis J. Sweeney; Thomas A. Williams	CENGAGE Learning	México	2008	8
Estadística para negocios. Segunda edición	John E. Hanke; Arthur G. Reitsch	McGraw Hill/Irwin	España	1999	4
Estadística y Muestreo. Decimo segunda edición	Ciro Martínez Bencardino	ECOE Ediciones	Colombi a	2008	10
Estadística para las Ciencias Sociales	Ferris J. Ritchey	McGraw Hill. Interameric ana	México	2006	8
Estadística II. Métodos Prácticos de Inferencia Estadística	Gildaberto Bonilla	UCA Editores	EI Salvador	2005	3